Panjanggaris singgung persekutuan dalam dua lingkaran adalah 24 cm, sedangkan panjang jari jari kedua lingkaran tersebut berturut turut 12 cm dan 6 cm. - 10895 Dairymilk Dairymilk 06.06.2017
Hai sobat Zen! Apa kabar? Kalian pastinya sudah belajar tentang lingkaran dong? Di artikel kali ini, kita akan bahas tentang garis singgung lingkaran. Apa sih garis singgung itu? Fungsinya apa? Terus cara ngitungnya gimana? Nah, sebelum pusing-pusing masuk ke rumus, coba kamu lihat gambar dibawah ini dulu deh Bisa kamu lihat, garis a letaknya berada di luar lingkaran, namun menyentuh 1 titik di lingkaran tersebut. Garis b memotong lingkaran dan menyentuh 2 titik lingkaran, sedangkan garis c terletak di luar lingkaran dan tidak menyentuh atau memotong titik di lingkaran. Nah, yang dinamakan garis singgung lingkaran yaitu garis a. Definisi Dan Ciri-Ciri Garis Singgung Lingkaran Kayak yang udah dijelasin di atas beserta gambar, jadi simplenya, garis singgung lingkaran adalah garis yang memotong atau menyentuh lingkaran tepat di 1 titik lingkaran tersebut. Garis singgung mempunyai titik pertemuan dengan objek atau bangun yang disentuhnya, namanya titik singgung. Sifat dan ciri-ciri garis singgung lingkaran antara lain Garis singgung lingkaran memotong atau menyentuh lingkarang di satu titik. Jika melalui sebuah garis titik di luar lingkaran, maka dapat dibuat dua buah garis singgung. Letak garis singgung lingkaran sejajar tegak dengan jari jari di titik singgungnya. Garis singgung lingkaran dan jari-jari lingkaran yang sejajar membentuk sudut 90 derajat Panjang garis singgung yang ditarik dari satu titik di luar lingkaran ke titik singgung adalah sama. Sebenarnya, untuk menghitung panjang garis singgung lingkaran, hal yang sangat berkaitan erat dan kita harus pahami adalah rumus dan konsep pada teorema phytagoras. Jadi, jika kalian sudah paham dengan konsep dan menghitung teorema phytagoras, materi mengenai garis singgung lingkaran ini bakal gampang buat kalian pahami. Garis singgung lingkaran dikenal terbagi dalam 2 jenis, yaitu garis singgung lingkaran persekutuan dalam dan garis singgung lingkaran persekutuan luar. Menentukan Panjang Garis Singgung Persekutuan Dalam Dua Lingkaran Garis singgung lingkaran persekutuan dalam melibatkan dua lingkaran dan sebuah garis singgung lingkaran. Untuk lebih jelasnya dapat dilihat pada gambar di bawah. Dari gambar di atas, bisa kita simpulkan bahwa Titik pusat lingkaran besar adalah M dengan jari jari R. Titik pusat lingkaran kecil adalah N dengan jari-jari r. Garis singgung persekutuan dalam adalah AB = d Jarak titik pusat kedua lingkaran besar dan kecil adalah MN = p Jika garis AB digeser ke atas dari titik B ke N maka akan diperoleh garis ON. Garis ON sejajar AB, sehingga sudut MON sama besar dengan sudut MAB, yaitu siku-siku 90 derajat Lalu sekarang fokus ke persegi panjang ABNO, Garis AB sejajar dengan NO, AO sejajar dengan BN, yang berarti sudut MON sama dengan sudut MAB, yaitu siku-siku 90 derajat Jadi, segi empat ABNO merupakan persegi panjang dengan panjang AB = d, dan lebar BN = r. Sekarang lihat lagi segitiga MNO, yang merupakan segitiga siku-siku dengan sudut siku-siku di titik O. Maka dengan menggunakan rumus pythagoras, akan diperoleh ON2 = MN2 – MO2 ON = Lalu, karena panjang AO sama dengan panjang BN, maka MO = R + r. Oleh karena itu, bisa disimpulkan bahwa rumus panjang garis singgung persekutuan dalam dua lingkaran d adalah Contoh soal Dketahui panjang jari-jari dua buah lingkaran masing-masing adalah 5 cm dan 2 cm. Jarak kedua titik pusatnya adalah 25 cm. Hitunglah panjang garis singgung persekutuan dalam kedua lingkaran tersebut! Jawab Masukkan rums d yang sudah dijelaskan diatas tadi Maka panjang garis singgung dalam kedua lingkaran tersebut adalah 24 cm. Menentukan Panjang Garis Singgung Persekutuan Luar Dua Lingkaran Sama seperti garis singgung persekutuan dalam dua lingkaran, garis singgung persekutuan luar dua lingkaran juga melibatkan dua buah lingkaran dan sebuah garis singgung. Bedanya ada di posisi garis singgung lingkaran. Dua titik singgung lingkaran pada garis singgung persekutuan dalam dua lingkaran terletak bersebrangan, sedangkan dua titik singgung lingkaran pada garis singgung persekutuan luar dua lingkaran terletak di sisi yang sama. Untuk lebih jelasnya, coba lihat gambar dibawah ini Dari gambar di atas, dapat disimpulkan bahwa Titik pusat lingkaran besar adalah M dengan jari-jari R. TItik pusat lingkaran kecil adalah N denga jari jari r. Garis singgung persekutuan luar adalah AB = f Jarak titik pusat kedua lingkaran adalah MN = p. Jika garis AB kita geser sejajar ke bawah dari B ke N, maka akan diperoleh garis ON. Garis AB sejajar ON, sehingga sudut MON sama dengan sudut MAB yaitu 90o siku-siku. Sekarang coba lihat persegi panjang ABNO. Garis AB sejajar dengan ON, dan garis AO sejajar dengan garis BN. Karena panjang ON sama dengan AB dan MO = R – r, maka rumus panjang garis singgung persekutuan luar dua lingkaran f adalah Contoh soal Diketahui panjang jari-jari dua lingkaran masing-masing adalah 15 cm dan 5 cm. Panjang garis singgung persekutuan luar kedua lingkaran adalah 24 cm. Hitunglah jarak kedua titik pusat kedua lingkaran tersebut! Jawab Maka, jarak kedua titik pusatnya = 26 cm Nah, sekian cara menghitung atau menentukan panjang garis singgung lingkaran. Mudah, kan? Baca Juga Cara Mengubah Desimal Ke Pecahan Dan Persen Mengenal 4 Rumus Turunan Matematika Dan Fisika
Jarakdua pusat lingkaran adalah 15 cm. Jika panjang jari-jari masing-masing lingkaran 4 cm dan 5 cm maka hitunglah panjang garis singgung persekutuan dalam dua lingkaran tersebut. Pembahasan l = = √ d2 - (R + r)2 l = √ (15 cm)2 - (5 + 4)2 l = √ 225 cm2 - 81 cm2 l = √ 144 cm = 12 cm Contoh soal 5 Contoh soal garis singgung persekutuan luar nomor 5
Ada dua jenis garis singgung lingkaran pada persekutuan dua lingkaran yaitu garis singgung persekutuan luar dan dalam pada dua buah lingkaran. Panjang garis singgung persekutuan dua lingkaran pada dua jenis tersebut dapat dihitung dengan rumus pythagoras. Di mana diketahui pada rumus pythagoras menyatakan hubungan ketiga sisi pada segitiga siku-siku. Pada segitiga siku-siku terdapat dua buah sisi tegak dan satu buah sisi miring. Garis singgung persekutuan dua lingkaran merupakan salah satu sisi tegak pada segitiga siku-siku. Sedangkan panjang jumlah/selisih jari-jari menjadi sisi tegak yang satunya. Sisi miring segitiga merupakan panjang garis singgung lingkaran pada persekutuan dua lingkaran. Tiga buah ruas garis yang merupakan panjang garis singgung, jarak dua pusat dua lingkaran, dan jumlah/selisih segitiga membentuk sebuah segitiga. Antara garis singgung persekutuan dua lingkaran dan garis jumlah/selisih jari-jari lingkaran selalu membentuk sudut siku-siku. Sehingga terbentuklah sebuah segitiga siku-siku yang hubungan ketiga sisinya sesuai dengan rumus pythagoras. Baca Juga Unsur-Unsur Lingkaran dan Rumus Keliling & Luasnya Bagaimana cara menghitung panjang garis singgung lingkaran pada persekutuan luar dua lingkaran? Bagaimana cara menghitung panjang garis singgung lingkaran? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Garis Singgung Persekutuan Luar Dua Lingkaran Garis Singgung Persekutuan Dalam Dua Lingkaran Contoh Soal Garis Singgung Persekutuan Dua Lingkaran dan Pembahasan Contoh 1 – Soal Garis Singgung Persekutuan Luar Dua Lingkaran Contoh 2 – Soal Garis Singgung Persekutuan Dua Lingkaran Dua buah lingkaran yang berpusat pada titik O dan P memiliki panjang jari-jari yang berbeda. Panjang jari-jari lingkaran dengan pusat O adalah R, sedangkan panjang jari-jari lingkaran dengan pusat P adalah r. Jarak kedua pusat pada dua lingkaran tersebut adalah OP. Terdapat sebuag garis yang menyinggung kedua lingkaran yaitu garis AB. Gambar di bawah menunjukkan letak garis AB yang merupakan garis singgung lingkaran pada persekutuan luar dari dua lingkaran. Garis AB adalah garis singgung lingkaran pada persekutuan luar dua lingkaran. Perhatikan bahwa panjang AB sama dengan panjang PP’. Sehingga dengan menghitung panjang PP’ secara otomatis dapat mengetahui panjang ruas garis AB. Di mana, garis AB merupakan garis singgung persekutuan luar dua lingkaran. Segitiga PP’O merupakan segitiga siku-siku yang siku-siku di P’. Hubungan ketiga sisi pada segitiga siku-siku memenuhi persamaan pada rumus Pythagoras. Sehingga dapat diperoleh persamaan P’P2 = OP2 ‒ P’O2 dengan P’O = OA ‒ BP = R ‒ r. Atau persamaan dapat juga dibentuk dalam bentuk P’P2 = OP2 ‒ R ‒ r2. Dengan demikian panjang garis singgung lingkaran pada persekutuan luar pada dua lingkaran dapat diperoleh melalui rumus garis singgung persekutuan luar berikut. Baca Juga Panjang Busur, Luas Juring, serta Luas Tembereng Garis Singgung Persekutuan Dalam Dua Lingkaran Garis singgung persekutuan dalam dua lingkaran juga melibatkan dua buah lingkaran dan sebuah garis singgung, sama seperti pada garis singgung persekutuan luar. Bedanya terletak pada posisi garis singgung lingkaran. Dua titik pada garis singgung persekutuan luar dua lingkaran terletak di sisi yang sama. Sedangkan pada garis singggung persekutuan dalam, dua titik singgung terletak pada sisi yang bersebrangan. Gambar di bawah menunjukkan posisi garis singgung lingkaran pada persekutuan dalam yang menyinggung dua buah lingkaran. Perhatikan bahwa segitiga PP’O merupakan segitiga siku-siku yang siku-siku di P’. Hubungan antara P’O, P’P, dan OP dapat sesuai pada rumus Pythagoras yaitu P’P2 = OP2‒ P’O2. Karena PO’ = OA + BP = R + r maka bentuk persamaan dapat juga dinyatakan dalam P’P2 = OP2‒ R + r2 Sehingga, rumus garis singgung persekutuan dalam dua lingkaran dapat dinyatakan dalam rumus di bawah. Baca Juga Hubungan Sudut Pusat dan Sudut Keliling pada Sebuah Lingkaran Contoh Soal Garis Singgung Persekutuan Dua Lingkaran dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman terkait bahasan di atas. Setiap soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Soal Garis Singgung Persekutuan Luar Dua Lingkaran Dua buah lingkaran memiliki panjang garis singgung persekutuan luar 24 cm dan jarak kedua titik pusat lingkaran 26 cm. Jika panjang jari-jari lingkaran besar 18 cm, maka panjang jari-jari lingkaran yang lain adalah ….A. 6 cmB. 8 cmC. 9 cmD. 10 cm Pembahasan Berdasarkan data pada soal, kita dapat peroleh gambar di bawah. Diketahui bahawa, Garis singgung persekutuan luar dua lingkaran AB = 24 cmJarak keuda pusat lingkaran OP = 26 cmPanjang jari-jari lingkaran besar OA = 18 cmPanjang jari-jari lingkaran kecil OB = r Menghitung panjang garis singgung AB AB2 = OP2 ‒ OA ‒ r2242 = 262 ‒ 18 ‒ r2676 = 576 ‒ 18 ‒ r218 ‒ r2 = 676 ‒ 57618 ‒ r2 = 10018 ‒ r = 10‒r = 10 ‒ 18‒r = ‒8 → r = 8 cm Jadi, panjang jari-jari lingkaran yang lain adalah 8 cm. Jawaban D Contoh 2 – Soal Garis Singgung Persekutuan Dua Lingkaran Perhatikan gambar berikut! Panjang jari-jari lingkaran besar dan kecil berturut-turut adalah 10 cm dan 5 cm. Jarak kedua pusat lingkaran adalah 25 cm. Panjang garis singgung AB adalah ….A. 12 cmB. 15 cmC. 17 cmD. 20 cm Pembahasan Berdasarkan keterangan yang diberikan pada soal dapat diperoleh informasi-informasi seperti berikut. Panjang jari-jari lingkaran besar R = 10 cmPanjang jari-jari lingkaran kecil r = 5 cmJarak kedua pusat lingkaran OP = 25 cm Menghutng panjang garis singgung ABAB2 = OP2 ‒ PC2AB2 = OP2 ‒ R + r 2= 252 ‒ 10 + 52= 625 ‒ 225AB2 = 400AB = √400 = 20 cm Jadi, panjang garis singgung AB adalah 20 cm. Jawaban D Sekian pembahasan mengenai garis singgung persekutuan dua lingkaran yang meliputi dua jenis yaitu garis singgung persekutuan luar dan dalam. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Segitiga Siku-Siku dengan Sudut Istimewa α = 30o, 45o, atau 60o
Pelajaran Soal & Rumus Garis Singgung Persekutuan Dalam Kalau kamu tertarik untuk mempelajari garis singgung persekutuan dalam, simak video pembahasannya di sini. Kami juga telah menyiapkan kuis berupa latihan soal dengan tingkatan yang berbeda-beda agar kamu bisa mempraktikkan materi yang telah dipelajari.
BerandaPanjang garis singgung persekutuan dalam dua buah ...PertanyaanPanjang garis singgung persekutuan dalam dua buah lingkaran 24 cm. Jika panjang jari-jari salah satu lingkaran 6 cm, dan jarak titik pusat kedua lingkaran 26 cm, maka panjang jari-jari lingkaran lainnya adalah ....Panjang garis singgung persekutuan dalam dua buah lingkaran 24 cm. Jika panjang jari-jari salah satu lingkaran 6 cm, dan jarak titik pusat kedua lingkaran 26 cm, maka panjang jari-jari lingkaran lainnya adalah ....2 cm4 cm6 cm8 cmRDMahasiswa/Alumni Universitas Negeri MalangJawabanpanjang jari-jari lainnya 4 cmpanjang jari-jari lainnya 4 cmPembahasanJadi panjang jari-jari lainnya 4 cm Jadi panjang jari-jari lainnya 4 cm Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!14rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!HFHanin Fawwas Pembahasan lengkap bangetRpRestiana putri FitriyahMakasih ❤️FCFahira Chalisa PutriIni yang aku cari!wwgwgwb Jawaban tidak sesuai©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Kategori: Lingkaran - Garis Singgung Persekutuan Dalam (GSPD) Kata Kunci : lingkaran, GSPD, garis singgung persekutuan dalam Diketahui Panjang GSPD = 24 cm Jarak antar pusat = 26 cm Panjang jari-jari salah satu lingkaran R = 6 cm Ditanya Panjang jari-jari yang lain (r) Penyelesaian Perhatikan gambar terlampir. Garis singgung persekutuan dalam
BerandaPanjang garis singgung persekutuan luar dua lingka...PertanyaanPanjang garis singgung persekutuan luar dua lingkaran adalah 12 cmdan jarak kedua pusatnya 13 cm. Jika panjang salah satu jari-jari lingkaran 8 cm, tentukan panjang jari-jari lingkaran yang lainnya!Panjang garis singgung persekutuan luar dua lingkaran adalah 12 cm dan jarak kedua pusatnya 13 cm. Jika panjang salah satu jari-jari lingkaran 8 cm, tentukan panjang jari-jari lingkaran yang lainnya!AKA. KhairunisaMaster TeacherMahasiswa/Alumni Universitas Negeri SemarangJawabanpanjang jari-jari lingkaran yang lainnya adalah .panjang jari-jari lingkaran yang lainnya adalah .PembahasanRumus untuk menentukan panjang garis singgung persekutuan luar pgspl adalah sebagai berikut. Berdasarkan rumus tersebut dapat ditentukan panjangjari-jari lingkaran yang lainnya sebagai berikut. atau Karena sehingga Dengan demikian, panjang jari-jari lingkaran yang lainnya adalah .Rumus untuk menentukan panjang garis singgung persekutuan luar pgspl adalah sebagai berikut. Berdasarkan rumus tersebut dapat ditentukan panjang jari-jari lingkaran yang lainnya sebagai berikut. atau Karena sehingga Dengan demikian, panjang jari-jari lingkaran yang lainnya adalah . Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!17rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!EAEvan Abner Pembahasan lengkap banget Ini yang aku cari! Mudah dimengerti Bantu banget Makasih ❤️KKeko Pembahasan lengkap banget Mudah dimengerti Ini yang aku cari! Bantu banget Makasih ❤️llutfiaaIni yang aku cari! Makasih ❤️ yaaattikaa Makasih ❤️ Pembahasan lengkap banget Ini yang aku cari! Bantu banget Mudah dimengerti©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Soaldan Pembahasan Garis Singgung Persekutuan Dalam Dua Lingkaran Soal 1 Panjang jari-jari dua lingkaran masing-masing adalah 12 cm dan 5 cm. Jika jarak kedua titik pusatnya adalah 24 cm, maka hitunglah panjang garis singgung persekutuan dalamnya. Pembahasan: Jari-jari lingkaran pertama (R) = 12 cm Jari-jari lingkaran kedua (r) = 5 cm
Daftar isi1 Pengertian Garis Singgung Persekutuan Dalam GSPD Dua Lingkaran 2 Rumus Garis Singgung Persekutuan Dalam GSPD Dua Lingkaran 3 Contoh Soal dan Pembahasan Garis Singgung Persekutuan Dalam GSPD Dua Lingkaran Pengertian Garis Singgung Persekutuan Dalam GSPD Dua LingkaranRumus dan Cara Menghitung Garis Singgung Persekutuan Dalam GSPD dua lingkaran serta Contoh Soal dan Pembahasan Lengkap. Perhatikan gambar di bawah! Lingkaran besar A panjang jari-jari R dan lingkaran kecil B panjang jari-jari r. Garis AP dan garis BQ tegak lurus terhadap garis PQ, sehingga garis PQ menyinggung kedua lingkaran jari-jari selalu tegak lurus garis singgung di titik singgung. Dengan demikian garis PQ merupakan Garis Singgung Persekutuan Dalam GSPD lingkaran A dan lingkaran B. Jarak antara pusat lingkaran besar A dengan pusat lingkaran kecil B adalah AB = d. Panjang garis PT sama dengan panjang garis BQ dan garis PT sejajar garis BQ, sehingga PT = BQ = r. Garis PQ sejajar dan sama panjang dengan garis BT, sehingga PQ = BT = Garis Singgung Persekutuan Dalam GSPD Dua LingkaranSegitiga ABT merupakan segitiga siku-siku dan siku-siku di T, sehingga berlaku rumus Pythagoras $AB^2 = AT^2 + BT^2$ $BT^2 = AB^2 - AT^2$ Karena panjang garis BT sama dengan panjang garis PQ, mka $PQ^2 = AB^2 - AT^2$ Perhatikan gambar! $\begin{align} AT &= AP + PT\\ &= R + r\\ AB &= d\\ PQ &= m \end{align}$ Sehingga $m^2 = d^2 - R + r^2$ $m = \sqrt{d^2 - R + r^2}$ m = PQ adalah panjang garis singgung persekutuan dalam dua lingkaran. d = AB adalah jarak pusat lingkaran besar dengan pusat lingkaran kecil. R adalah jari-jari lingkaran besar. r adalah jari jari lingkaran kecil. R > r. Pelajari contoh soal dan pembahasan garis singgung persekutuan dalam dua lingkaran yang berikut!Contoh Soal dan Pembahasan Garis Singgung Persekutuan Dalam GSPD Dua LingkaranContoh Soal nomor 1 Dua buah lingkaran berjari-jari masing-masing 2 cm dan 7 cm. Jika jarak kedua pusat lingkaran 15 cm, maka panjang garis singgung persekutuan dalam kedua lingkaran tersebut adalah . . . . cm. A. 12 B. 10 C. 9 D. 8 [Garis Singgung Persekutuan Dalam GSPD] Pembahasan $d = AB = 15$ → Jarak pusat kedua lingkaran. $R = 7$ → Jari-jari lingkaran besar. $r = 2$ → Jari-jari lingkaran kecil. $\begin{align} m &= \sqrt{d^2 - R + r^2}\\ &= \sqrt{15^2 - 7 + 2^2}\\ &= \sqrt{15^2 - 9^2}\\ &= \sqrt{225 - 81}\\ &= \sqrt{144}\\ &= 12\\ \end{align}$ jawab A. Cara cepat Karena d, m, dan R + r membentuk segitiga siku-siku, kita bisa memperhatikan sisi-sisi segitiga apakah merupakan tripel Pythagoras atau tidak. Dari soal diketahui d = AB = 15 cm sisi miring atau sisi terpanjang, R + r = 2 + 7 = 9 cm salah satu sisi siku-siku. Dengan begitu kita bisa tahu bahwa m = PQ sisi siku-siku yang lain adalah 12 cm, karena angka 9, 12, dan 15 merupakan tripel Phytagoras. Contoh Soal nomor 2 Perhatikan gambar berikut! Jika panjang PQ = 20 cm, maka jarak antara pusat lingkaran A dengan pusat lingkaran B adalah . . . . cm. A. 20 B. 25 C. 27 D. 30 [Garis Singgung Persekutuan Dalam GSPD] Pembahasan $R = 9\ cm$ → Jari-jari lingkaran besar. $r = 6\ cm$ → Jari-jari lingkaran kecil. $m = PQ = 20\ cm$ → Panjang garis persekutuan dalam. $m^2 = d^2 - R + r^2$ $\begin{align} d^2 &= m^2 + R + r^2\\ &= 20^2 + 9 + 6^2\\ &= 20^2 + 15^2\\ &= 400 + 225\\ &= 625\\ d &= \sqrt{625}\\ &= 25\ cm\\ \end{align}$ jawab B. Cara cepat R + r, m, dan d merupakan sisi-sisi sebuah segitiga siku-siku. R + r = 9 + 6 = 15 cm salah satu sisi siku-siku, m = PQ = 20 cm salah satu sisi siku-siku, dengan mudah kita bisa tahu bahwa panjang d = AB sisi miring atau sisi terpanjang adalah 25 cm, karena angka 15, 20, dan 25 merupakan tripel Pythagoras. Contoh Soal nomor 3 Diketahui jarak dua pusat lingkaran adalah 34 cm, dan panjang jari-jari lingkaran A sama dengan dua kali panjang jari-jari lingkaran B. Jika panjang garis singgung persekutuan dalam kedua lingkaran tersebut adalah 16 cm, maka selisih panjang jari-jari kedua lingkaran tersebut adalah . . . . cm. A. 10 B. 12 C. 13 D. 15 [Garis Singgung Persekutuan Dalam GSPD] Pembahasan $d = AB = 34\ cm$ → Jarak pusat kedua lingkaran. $R = 2r$ $m = 16\ cm$ → Panjang garis singgung persekutuan dalam. $m^2 = d^2 - R + r^2$ $16^2 = 34^2 - 2r + r^2$ $256 = 1156 - 3r^2$ $3r^2 = 1156 - 256$ $9r^2 = 900$ $r^2 = 100$ $r = \sqrt{100}$ $r = 10$ $R = 2r = = 20$ $\begin{align} Selisih &= R - r\\ &= 20 - 10\\ &= 10\ cm\\ \end{align}$ jawab A. Cara cepat d = AB = 34 cm sisi miring atau sisi terpanjang, m = PQ = 16 cm salah satu sisi siku-siku, dengan demikian panjang R + r adalah 30 cm, karena angka 16, 30, dan 34 merupakan tripel Phytagoras. R + r = 30 2r + r = 30 3r = 30 r = 10 cm R = 2r = = 20 cm. Selisih = R - r = 20 -10 = 10 cm. Contoh Soal nomor 4 Panjang garis singgung persekutuan dalam dua buah lingkaran 24 cm. Jika panjang jari-jari salah satu lingkaran 6 cm, dan jarak titik pusat kedua lingkaran 26 cm, maka panjang jari-jari lingkaran lainnya adalah . . . . A. 2 cm B. 4 cm C. 6 cm D. 8 cm [Garis Singgung Persekutuan Dalam GSPD] Pembahasan $m = PQ = 24\ cm$ → Panjang garis singgung persekutuan dalam. $d = AB = 26\ cm$ → Jarak titik pusat kedua lingkaran. $m^2 = d^2 - R + r^2$ $24^2 = 26^2 - R + r^2$ $R + r^2 = 26^2 - 24^2$ $R + r^2 = 676 - 576$ $R + r^2 = 100$ $R + r = \sqrt{100}$ $R + r = 10$ $6 + r = 10$ $r = 10 - 6$ $r = 4\ cm$ jawab B. Cara cepat d = AB = 26 cm sisi miring atau sisi terpanjang, m = PQ = 24 cm salah satu sisi siku-siku, maka R + r = 10. Perlu diketahui bahwa angka 10, 24, dan 26 merupakan tripel Pythagoras. R + r = 10 6 + r = 10 r = 10 - 6 r = 4 cm. Contoh Soal nomor 5 Pada gambar di bawah, panjang AB = 52 cm, PQ = 48 cm, dan AP lebih panjang 8 cm dari BQ. Panjang jari-jari lingkaran B adalah . . . . A. 4 cm B. 6 cm C. 8 cm D. 10 cm [Garis Singgung Persekutuan Dalam GSPD] Pembahasan d = AB = 52 cm → Jarak titik pusat kedua lingkaran. m = PQ = 48 cm → Panjang garis singgung persekutuan dalam. R lebih panjang 8 cm dari r, berarti r harus ditambah 8 cm biar sama panjang dengan R. Dengan demikian R = r + 8 . . . . * $m^2 = d^2 - R + r^2$ $48^2 = 52^2 - R + r^2$ $R + r^2 = 52^2 - 48^2$ $R + r^2 = 2704 - 2304$ $R + r^2 = 400$ $R + r = \sqrt{400}$ $R + r = 20$ . . . . ** Dari persamaan * dan ** $r + 8 + r = 20$ $2r + 8 = 20$ $2r = 20 - 8$ $2r = 12$ $r = 6\ cm$ jawab B. Cara cepat Perhatikan bahwa R + r, m, dan d merupakan segitiga siku-siku dimana R + r dan m merupakan sisi siku-siku dan d merupakan sisi miring, maka dengan pemahaman tripel Pythagoras kita tahu bahwa panjang dari R + r adalah 20 cm. Hal ini dikarenakan angka 20, 48, dan 52 adalah tripel Pythagoras. R + r = 20 r + 8 + r = 20 2r + 8 = 20 2r = 20 - 8 2r = 12 r = 6 cm. Demikianlah ulasan tentang garis singgung persekutuan dalam dua lingkaran, semoga bermanfaat. BACA JUGA Teorema dan Tripel PythagorasSHARE THIS POST
Garissinggung lingkaran merupakan garis yang memotong suatu lingkaran di satu titik dan tegak lurus dengan jari-jari di titik singgungnya. Pada dua buah lingkaran, terdapat garis singgung persekutuan dua lingkaran, yaitu garis singgung persekutuan dalam dan garis singgung persekutuan luar.
Contoh3. Panjang garis singgung persekutuan dalam dua lingkaran adalah 15 cm. Jarak kedua pusat lingkaran adalah 17 cm. Jika panjang salah satu jari-jari lingkaran adalah 3 cm. Hitunglah panjang jari-jari lingkaran yang lain! Pembahasan: Contoh 4. Perhatikan gambar di bawah ini.
ContohSoal 1. Panjang garis singgung persekutuan dalam dua lingkaran adalah 24 cm dan jarak kedua pusatnya adalah 26 cm. Jika panjang salah satu jari-jari lingkaran 6 cm, hitunglah panjang jari-jari lingkaran yang lain.
Panjanggaris singgung persekutuan dalam dua lingkaran adalah 24 c m 24 \\mathrm{~cm} 24 cm dan jarak kedua pusatnya adalah 26 c m 26 \\mathrm{~cm} 26 cm. Jika diketahui panjang salah satu jari-jari lingkaran adalah 6 c m 6 \\mathrm{~cm} 6 cm , maka panjang jari-jari lingkaran yang lain adalah.
tkxDS. k13i2lpcmn.pages.dev/445k13i2lpcmn.pages.dev/488k13i2lpcmn.pages.dev/224k13i2lpcmn.pages.dev/783k13i2lpcmn.pages.dev/715k13i2lpcmn.pages.dev/76k13i2lpcmn.pages.dev/361k13i2lpcmn.pages.dev/955k13i2lpcmn.pages.dev/941k13i2lpcmn.pages.dev/907k13i2lpcmn.pages.dev/964k13i2lpcmn.pages.dev/454k13i2lpcmn.pages.dev/938k13i2lpcmn.pages.dev/178k13i2lpcmn.pages.dev/761
panjang garis singgung persekutuan dalam dua lingkaran adalah 24 cm